Volume 6 Number 6 (Jun. 2011)
Home > Archive > 2011 > Volume 6 Number 6 (Jun. 2011) >
JSW 2011 Vol.6(6): 961-968 ISSN: 1796-217X
doi: 10.4304/jsw.6.6.961-968

An Ensemble Data Mining and FLANN Combining Short-term Load Forecasting System for Abnormal Days

Ming Li, Junli Gao
College of Automation, Guangdong University of Technology, Guangzhou, P.R.China

Abstract—The modeling of the relationships between the power loads and the variables that influence the power loads especially in the abnormal days is the key point to improve the performance of short-term load forecasting systems. To integrate the advantages of several forecasting models for improving the forecasting accuracy, based on data mining and artificial neural network techniques, an ensemble decision tree and FLANN combining short-term load forecasting system is proposed to mainly settle the weathersensitive factors’ influence on the power load. In the proposed strategy, an ensemble decision tree with abnormal pattern modification algorithm and a FLANN algorithm are used respectively to obtain the initial predicting results of the power loads first, a BP-based combination of the above two results are used to get a better prediction afterwards. Corresponding forecasting system is developed for practical use. The statistical analysis showed that the accuracy of the proposed short time load forecasting of abnormal days has increased greatly. Meanwhile, the actual forecast results of Anhui Province’s electric power load have validated the effectiveness and the superiority of the system.

Index Terms—short-term load forecasting, combining forecasting, abnormal days, ensemble data mining, FLANN


Cite: Ming Li, Junli Gao, "An Ensemble Data Mining and FLANN Combining Short-term Load Forecasting System for Abnormal Days," Journal of Software vol. 6, no. 6, pp. 961-968, 2011.

General Information

ISSN: 1796-217X (Online)
Frequency: Monthly (2006-2019); Bimonthly (Since 2020)
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, ProQuest, INSPEC, ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsw@iap.org
  • Dec 06, 2019 News!

    Vol 14, No 1- Vol 14, No 4 has been indexed by EI (Inspec)   [Click]

  • Nov 18, 2019 News!

    Papers published in JSW Vol 14, No 1- Vol 14 No 10 have been indexed by DBLP     [Click]

  • Jan 31, 2020 News!

    Vol 15, No 1 has been published with online version     [Click]

  • Aug 01, 2018 News!

    [CFP] 2020 the annual meeting of JSW Editorial Board, ICCSM 2020, will be held in Rome, Italy, July 17-19, 2020   [Click]

  • Jun 25, 2019 News!

    Vol.13, No.9 has been indexed by EI (Inspec).   [Click]