JSW 2013 Vol.8(4): 963-970 ISSN: 1796-217X
doi: 10.4304/jsw.8.4.963-970
doi: 10.4304/jsw.8.4.963-970
3D Object Retrieval Based on PSO-K-Modes Method
Xiangjun Zhao, Mei Lu
School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, China
Abstract—By use of semantic attributes of 3D object, the user can search for targeted objects, which main advantage is that it does not require the user to sketch a 3D object as the query for 3D object retrieval, and the retrieval system can obtain a better retrieval performance. There are many categorical datum among these attributes, and how to use those and find the most similar objects is a vital problem to resolve. However, several elements with different types may have a shorter Euclidean distance. It is obvious the objects belonging to the same category are closer. Therefore, we present a 3D object retrieval method with clustering principle and RBF interpolator, which need a robust clustering method. The k-modes is a classic clustering algorithm for categorical data set. Its principle is simple, but it is easy to converge to a local optimum. PSO (Particle Swarm Optimization) algorithm is an effective tool for optimization, so we attempt to overcome the local optimum problem with PSO for categorical data set. PSO usually used to solve continuous optimization problems., but the categorical data are non-continuous. This paper presents an a novel k-p-modes algorithm to overcome these problems. Results show the method is effective.
Index Terms—3D object retrieval, particle swarm optimization, K-Mode, clustering algorithm.
Abstract—By use of semantic attributes of 3D object, the user can search for targeted objects, which main advantage is that it does not require the user to sketch a 3D object as the query for 3D object retrieval, and the retrieval system can obtain a better retrieval performance. There are many categorical datum among these attributes, and how to use those and find the most similar objects is a vital problem to resolve. However, several elements with different types may have a shorter Euclidean distance. It is obvious the objects belonging to the same category are closer. Therefore, we present a 3D object retrieval method with clustering principle and RBF interpolator, which need a robust clustering method. The k-modes is a classic clustering algorithm for categorical data set. Its principle is simple, but it is easy to converge to a local optimum. PSO (Particle Swarm Optimization) algorithm is an effective tool for optimization, so we attempt to overcome the local optimum problem with PSO for categorical data set. PSO usually used to solve continuous optimization problems., but the categorical data are non-continuous. This paper presents an a novel k-p-modes algorithm to overcome these problems. Results show the method is effective.
Index Terms—3D object retrieval, particle swarm optimization, K-Mode, clustering algorithm.
Cite: Xiangjun Zhao, Mei Lu, "3D Object Retrieval Based on PSO-K-Modes Method," Journal of Software vol. 8, no. 4, pp. 963-970, 2013.
General Information
ISSN: 1796-217X (Online)
Frequency: Quarterly
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, CNKI, Google Scholar, ProQuest, INSPEC(IET), ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsw@iap.org
-
Apr 26, 2021 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Nov 18, 2021 News!
Papers published in JSW Vol 16, No 1- Vol 16, No 6 have been indexed by DBLP [Click]
-
Dec 24, 2021 News!
Vol 15, No 1- Vol 15, No 6 has been indexed by IET-(Inspec) [Click]
-
Nov 18, 2021 News!
[CFP] 2022 the annual meeting of JSW Editorial Board, ICCSM 2022, will be held in Rome, Italy, July 21-23, 2022 [Click]
-
Aug 01, 2023 News!