Volume 7 Number 12 (Dec. 2012)
Home > Archive > 2012 > Volume 7 Number 12 (Dec. 2012) >
JSW 2012 Vol.7(12): 2657-2662 ISSN: 1796-217X
doi: 10.4304//jsw.7.12.2657-2662

Fault Diagnosis Based on Improved Kernel Fisher Discriminant Analysis

Zhengwei Li, Zhengwei Li, Guojun Tan, Yuan Li
School of Computer Science and Technology. China University of Mining and Technology Xuzhou, China


Abstract—There are two fundamental problems of the Kernel Fisher Discriminant Analysis (KFDA) for nonlinear fault diagnosis. The first one is the classification performance of KFDA between the normal data and fault data degenerates as long as overlapping samples exist. The second one is that the computational cost of kernel matrix becomes large when the training sample number increases. Aiming at the two major problems, in this paper, an improved fault diagnosis method based on KFDA(IKFDA) is proposed. There are two aspects are improved in the method. Firstly, the variable weighting vector was incorprated into KFDA which can improve the discriminant performance. Secondly, when the training sample number becomes large, a feature vector selection scheme based on a geometrical consideration is given to reduce the computational complexity of KFDA for fault diagnosis. Finally, Gaussian mixture model (GMM) is applied for fault isolation and diagnosis on the KFDA subspace. Experimental results show that the proposed method outperforms traditional kernel principal component analysis (KPCA) and general KDA algorithms.

Index Terms—kernel fisher discriminant analysis, fault diagnosis, variable weighting, feature vector selection, gaussian mixture model

[PDF]

Cite: Zhengwei Li, Zhengwei Li, Guojun Tan, Yuan Li, "Fault Diagnosis Based on Improved Kernel Fisher Discriminant Analysis," Journal of Software vol. 7, no. 12, pp. 2657-2662, 2012.

PREVIOUS PAPER
First page

General Information

ISSN: 1796-217X (Online)
Frequency: Monthly
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, ProQuest, INSPEC, ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsw@iap.org
  • Dec 06, 2019 News!

    Vol 14, No 1- Vol 14, No 4 has been indexed by EI (Inspec)   [Click]

  • Nov 18, 2019 News!

    Papers published in JSW Vol 14, No 1- Vol 14 No 10 have been indexed by DBLP     [Click]

  • Dec 06, 2019 News!

     Vol 13, No 10- Vol 13, No 12 has been indexed by EI (Inspec)   [Click]

  • Aug 01, 2018 News!

    [CFP] 2020 the annual meeting of JSW Editorial Board, ICCSM 2020, will be held in Rome, Italy, July 17-19, 2020   [Click]

  • Jun 25, 2019 News!

    Vol.13, No.9 has been indexed by EI (Inspec).   [Click]