Volume 7 Number 12 (Dec. 2012)
Home > Archive > 2012 > Volume 7 Number 12 (Dec. 2012) >
JSW 2012 Vol.7(12): 2657-2662 ISSN: 1796-217X
doi: 10.4304//jsw.7.12.2657-2662

Fault Diagnosis Based on Improved Kernel Fisher Discriminant Analysis

Zhengwei Li, Zhengwei Li, Guojun Tan, Yuan Li
School of Computer Science and Technology. China University of Mining and Technology Xuzhou, China

Abstract—There are two fundamental problems of the Kernel Fisher Discriminant Analysis (KFDA) for nonlinear fault diagnosis. The first one is the classification performance of KFDA between the normal data and fault data degenerates as long as overlapping samples exist. The second one is that the computational cost of kernel matrix becomes large when the training sample number increases. Aiming at the two major problems, in this paper, an improved fault diagnosis method based on KFDA(IKFDA) is proposed. There are two aspects are improved in the method. Firstly, the variable weighting vector was incorprated into KFDA which can improve the discriminant performance. Secondly, when the training sample number becomes large, a feature vector selection scheme based on a geometrical consideration is given to reduce the computational complexity of KFDA for fault diagnosis. Finally, Gaussian mixture model (GMM) is applied for fault isolation and diagnosis on the KFDA subspace. Experimental results show that the proposed method outperforms traditional kernel principal component analysis (KPCA) and general KDA algorithms.

Index Terms—kernel fisher discriminant analysis, fault diagnosis, variable weighting, feature vector selection, gaussian mixture model


Cite: Zhengwei Li, Zhengwei Li, Guojun Tan, Yuan Li, "Fault Diagnosis Based on Improved Kernel Fisher Discriminant Analysis," Journal of Software vol. 7, no. 12, pp. 2657-2662, 2012.

First page

General Information

ISSN: 1796-217X (Online)
Frequency:  Bimonthly (Since 2020)
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, Google Scholar, ProQuest, INSPEC(IET), ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsw@iap.org
  • Apr 26, 2021 News!

    Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec)     [Click]

  • Jun 22, 2020 News!

    Papers published in JSW Vol 14, No 1- Vol 15 No 4 have been indexed by DBLP     [Click]

  • Sep 13, 2021 News!

    The papers published in Vol 16, No 6 have all received dois from Crossref    [Click]

  • Jan 28, 2021 News!

    [CFP] 2021 the annual meeting of JSW Editorial Board, ICCSM 2021, will be held in Rome, Italy, July 21-23, 2021   [Click]

  • Sep 13, 2021 News!

    Vol 16, No 6 has been published with online version     [Click]